Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Genomics, Proteomics & Bioinformatics ; (4): 321-332, 2020.
Article in English | WPRIM | ID: wpr-880484

ABSTRACT

The dynamic activity of transposable elements (TEs) contributes to the vast diversity of genome size and architecture among plants. Here, we examined the genomic distribution and transposition activity of long terminal repeat retrotransposons (LTR-RTs) in Arabidopsis thaliana (Ath) and three of its relatives, Arabidopsis lyrata (Aly), Eutrema salsugineum (Esa), and Schrenkiella parvula (Spa), in Brassicaceae. Our analyses revealed the distinct evolutionary dynamics of Gypsyretrotransposons, which reflects the different patterns of genome size changes of the four species over the past million years. The rate of Gypsy transposition in Aly is approximately five times more rapid than that of Ath and Esa, suggesting an expanding Aly genome. Gypsy insertions in Esa are strictly confined to pericentromeric heterochromatin and associated with dramatic centromere expansion. In contrast, Gypsy insertions in Spa have been largely suppressed over the last million years, likely as a result of a combination of an inherent molecular mechanism of preferential DNA removal and purifying selection at Gypsy elements. Additionally, species-specific clades of Gypsy elements shaped the distinct genome architectures of Aly and Esa.


Subject(s)
Brassicaceae/genetics , Evolution, Molecular , Genome Size , Genome, Plant , Genomics , Phylogeny , Retroelements , Species Specificity
2.
Genomics, Proteomics & Bioinformatics ; (4): 354-364, 2018.
Article in English | WPRIM | ID: wpr-772968

ABSTRACT

The isolated type of orofacial cleft, termed non-syndromic cleft lip with or without cleft palate (NSCL/P), is the second most common birth defect in China, with Asians having the highest incidence in the world. NSCL/P involves multiple genes and complex interactions between genetic and environmental factors, imposing difficulty for the genetic assessment of the unborn fetus carrying multiple NSCL/P-susceptible variants. Although genome-wide association studies (GWAS) have uncovered dozens of single nucleotide polymorphism (SNP) loci in different ethnic populations, the genetic diagnostic effectiveness of these SNPs requires further experimental validation in Chinese populations before a diagnostic panel or a predictive model covering multiple SNPs can be built. In this study, we collected blood samples from control and NSCL/P infants in Han and Uyghur Chinese populations to validate the diagnostic effectiveness of 43 candidate SNPs previously detected using GWAS. We then built predictive models with the validated SNPs using different machine learning algorithms and evaluated their prediction performance. Our results showed that logistic regression had the best performance for risk assessment according to the area under curve. Notably, defective variants in MTHFR and RBP4, two genes involved in folic acid and vitamin A biosynthesis, were found to have high contributions to NSCL/P incidence based on feature importance evaluation with logistic regression. This is consistent with the notion that folic acid and vitamin A are both essential nutritional supplements for pregnant women to reduce the risk of conceiving an NSCL/P baby. Moreover, we observed a lower predictive power in Uyghur than in Han cases, likely due to differences in genetic background between these two ethnic populations. Thus, our study highlights the urgency to generate the HapMap for Uyghur population and perform resequencing-based screening of Uyghur-specific NSCL/P markers.


Subject(s)
Humans , Infant , Asian People , Genetics , China , Ethnology , Cleft Lip , Genetics , Cleft Palate , Genetics , Genome-Wide Association Study , Logistic Models , Machine Learning , Methylenetetrahydrofolate Reductase (NADPH2) , Genetics , Polymorphism, Single Nucleotide , Retinol-Binding Proteins, Plasma , Genetics , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL